

How we made
a Failed COTS solution Useful

with FOSS

Agenda

 Background

 Personal Disclaimer

 COTS vs. FOSS

 Product Failure

 Official Approach – Worked with vendor

 Good Customer Approach – Help the vendor

 Fed-up Customer Approach – Replace Software

 Enhance Solution

 Final Thoughts

Background

 On contract to a US Agency as the Senior
InfoSec Engineer for the CISO to evaluate, test,
and design security solutions

 Among other things, the team is responsible for
central-collection of ~25million security events
per day from over 8000 devices, and analysis
of this data

Personal Disclaimer

 Support FOSS but not in favor of a better
COTS solution (if one exists)

 3-year story, not a how-to
 Not vendor specific – COTS NIDS

COTS Incentives

 Update cycle (patches, signatures, etc)
 Supported
 Integrated technologies
 It Looks slick (when it works)
 Someone to blame
 “We are a [insert name-brand here] shop”
 “I just don't trust that freeware!”

FOSS Incentives

 Known and working
 No license or PO overhead
 Free?
 Adaptable to any environment
 Forums, Wikis and Message Boards, oh my
 COTS = tied hands

 Can't make changes per license or closed source
 Customer Support - The Golden Handcuffs

 Unattributed quote from government IT staff: “I
would rather implement a COTS solution of
unknown quality but have someone to blame
then to put in FOSS software that we believe
will work, but where I will have no one to turn to
if there are problems.”

The Environment – Jun. 2004

 Over 90 offices in approx. 70 countries
 Highly-latent network links, fail-over to VSAT
 ~3/4 of offices have a local Internet gateway
 Project to deploy approx. 100 COTS NIDS

Appliances mostly model 4215
 This includes replacement of original 5 4210s

Rude Awakening – 6 Months In

 Many sensors not reporting in
 Little visibility in many locations
 Mgmt system required frequent rebuilds
 Mgmt system clunky and buggy
 Eventually tasked to define key issues

 100 devices in over 90 offices all over the world
 All installed in average server rooms

Problems - Hardware

 Poor design
 Unreachable systems

were costly in time
 Long replacement

cycle (slow
international ship)

 Recovered drive is
useless

Poor Design - Close-Up

Problems – Mgmt Overhead

 Managing the management solution
 Sensitive
 Rebuilt DB 4 times in 18 months
 Frequent Errors (i.e. Java Exceptions)

 Slow management tasks
 Version query took 45 minutes
 Updates took many hours or days

Problems - Performance

 Advertised performance (80mb/s)
 Marketing numbers?
 No port bonding

 Our test revealed ~92% packet-loss at the NIC
when burdened with 77mb/s of traffic

 Of the < 8% that got through, over ½ was
dropped by the kernel

Problem - Failed Services

 NTP
 Not compatible with “ntp keys”
 Service ntpd frequently dies
 NIDS time off by minutes/hours

 Sensing interface “downs” itself
 IDS software frequently dies

Problem - No updates

 Timeout due to high-latent links
 No notification for failed update
 Queries took 45 minutes
 Approximately 10% never would update

Problems - Signatures

 Signature Updates impossible
 Over 10% timed-out due to latency
 No mitigation for slow links

 Limited signature tuning capability
 No visible detection logic (on many sigs)
 High FP rate (updates revived tuned sigs)
 Little visibility into vendor-supplied rules
 Very limited on custom signatures

Official Approach

Tell Vendor to Fix Problem

Worked With Vendor

 Opened lots of customer support cases
 Updated sales team (e.g. Sales Engineer)

 On-site visits and many conference calls
 SE and entire Sales Team was no help at all

 Brought issues to product manager (con call)
 Bought new hardware for critical sites, model

4240

COTS NIDS Reality

 RMAed units, but we are blind for weeks
 Other reports of failure in Federal Agencies
 Usage & functionality problems were systemic
 Each next release didn't fix big issues
 Our new hardware investment had problems
 A full-scale replacement was not budgeted

Good Customer Approach

Encourage Product Work

Managed the NIDS

 Got r00t!
 Implemented shared keys
 Studied underlying system

Replaced Signature Updates

 Latency is a fact, need better solution
 Wrote script (i.e. wrapped wget) to download

latest sig version centrally
 Synced latest version to NIDS local directory
 Configured NIDS to update from local

Continued Work with Vendor

 Opened more customer support cases
 Stayed in contact with sales team

 More on-site visits and conference calls

 Met with vendor's security product panager
 No hope in site
 Chastised for patching our COTS NIDS using ssh

Implemented Monitoring

 Used Henrik Storner's
Hobbitmon to monitor
network-based
services

 More visibility can be
a scary thing

 Monitored icmp then
ssh, then https, then
certificate checks

More Visibility = Horror

 Monitoring demonstrated larger problem
 About 30% of the COTS NIDS were not functioning
 Some were in half hung state
 Others had down sensing interfaces
 Services were failing at a high frequency
 Time varied greatly

 Hobbit effectively measured up-status
 Hobbit allowed us to report on outages

COTS NIDS – Half Hung State

Replacement Options – ~3 Years

 Stay with existing vendor
 Invest in a new NIDS vendor
 Implement our own solution

Fed-up Customer Approach

Replace Vendor's Software
Implement our own Known-

Working Solution

Approval

 Got approval to design a new solution using
Free and Open Source Software and an in-
house implementation

 Got approval to use existing hardware platform
(point of no return)

Project Definition – Mid-Aug. 2006

 Time-frame
 7 Weeks until forced upgrade
 Had 7 Weeks to:

 Design solution
 Build solution
 Test solution
 Implement solution

 Prior commitments

 Initial goal: Replace existing functionality 1-for-1
 Leverage already-installed hardware

Architecture Challenges

 Six variations of NIDS
 Three models of appliance (4215,4240,IDSM2)
 Two base OS/Vers (4.x-RH7.3,5.x-busybox)

 Three naming schemes for interfaces
 Many quirks including:

 Varying libraries
 Diverse filesystem layout
 Inconsistent software packages
 Different environment (i.e. PATH)

Limitations of Platform

 Ver 4.x - modified Redhat 7.3
 Specialized Kernel
 Few tools and libs

 Ver 5.x - Busybox
 Newer specialized kernel
 Much fewer tools and libs
 At boot, flash writes to ramdisk (no persistent FS)

Limitations of Hardware

 4215s (mostly running 4.x)
 Frequent hard drive failures
 Very low net capacity (92% dropped packets etc)

 4240s (mostly running 5.x)
 Limited-sized CF disk (largest part. was 512 mb)

only, no larger data store
 Faster net but not great

Solution Replacement - Phase 1

Phase 1 Goal

To maintain continuity of central management for
the NIDS, a more complex management
architecture was designed to obfuscate subtle
differences in the six different platforms.

The primary goal was to keep the analysts
watching packets and not configuring
snort/systems.

Phase 1 Objectives

 Enhanced Monitoring (internals)
 System Management
 Signature Management
 Snort Management
 Log Management
 Implement/Cut-over and not miss events

Phase1 Mindmap

Monitoring

 Continue using Hobbitmon
 Built custom hobbit-client packages
 Monitor internals including

 Snort service
 Ntp service
 Sensing interface status
 Resources: disks, CPU, memory
 Syslog

System Management

 Used rsync to sync system files
 Start scripts
 ntp.conf
 Host keys

Signature Management

 Sync central sigs to VRT with oinkmaster
 Integrate custom rules as well
 Sync to NIDS with rsync (used bwlimit)
 Aside: Snort rules

Snort Mgmt - NIDS.conf

 Central NIDS.conf
 Csv containing configuration parameters
 Mgmt and sensing Ips
 Interfaces and system-name
 BPF option
 Larger components of snort.conf

#01NAME_INT,02MGMT_IP,03NAME,04REGION,05MODEL,06OS,07HOME_NETS,08DEF
AULT_LOCAL_VARS.include,09DEFAULT_ENT_VARS.include,10DEFAULT_DECODERS.in
clude,11DEFAULT_PREPROCESSORS.include,12CXXLOGS,13DEFAULT_RULES.include,
14DEFAULT_CONFIG_STATEMENTS.include,15ROLE,16NOTES,17FILTER,18BPF

Snort Mgmt - snort.env

 snort.env (library function)
 Parses NIDS.conf on system
 Assigns variables to csv fields from NIDS.conf

DEB_LOGS="/var/log/ns/snort/"
DEB_BIN="/usr/bin/"
C40_LOGS="/usr/cids/idsRoot/var/snort/"
C40_BIN="/usr/local/sbin"
C50_LOGS="/usr/cids/idsRoot/var/snort/"
C50_BIN="/usr/local/bin"

SN_RULES="`echo $instance | awk -F, '{ print $13 }'`"
SN_CONFIG="`echo $instance | awk -F, '{ print $14 }'`"
ROLE="`echo $instance | awk -F, '{ print $15 }'`"
NOTES="`echo $instance | awk -F, '{ print $16 }'`"
SN_FILTER="`echo $instance | awk -F, '{ print $17 }'`"
SN_BPF="$NIDS_SNORT_DIR/confs/`grep $NAMEOLD $NIDSCONF | awk -F, '{ print $18 }'`"

Snort Mgmt – Snort init

 snort.init
 Sources snort.env
 Uses values attained from NIDS.conf
 Assembles snort.conf at runtime from template

Prep_Config(){
cp $TEMPLATE $CONF
$PERL -pi -e "s/HOMENETS/$SN_HOME_NETS/;" $CONF
$PERL -pi -e "s/DEFAULT_LOCAL_VARS.include/$SN_LOCAL_VARS/;" $CONF
$PERL -pi -e "s/DEFAULT_ENT_VARS.include/$SN_ENT_VARS/;" $CONF
$PERL -pi -e "s/DEFAULT_DECODERS.include/$SN_DECODERS/;" $CONF
$PERL -pi -e "s/DEFAULT_PRE_PROCESSORS.include/$SN_PREPROCESSORS/;" $CONF
$PERL -pi -e "s/ALERTFACILITY/$FACILITY/;" $CONF
rm $LOGDIR; ln -s $SN_LOGGING_DIR $LOGDIR
$PERL -pi -e "s/HOST/$NAME/;" $CONF
$PERL -pi -e "s/DEFAULT_CONFIG_STATEMENTS.include/$SN_CONFIG/;" $CONF
$PERL -pi -e "s/DEFAULT_RULES.include/$SN_RULES/;" $CONF
[! -d $BINDIR] && ln -s $BINDIR $NIDS_SNORT_DIR/bin
}

Log Management

 Syslog to central syslog-ng server
 Syslog-ng server stores copy and redirects to

SIM
 Analysts use shell scripts to parse logs in store
 Analysts use SIM to look at trends and

correlations

Implementation

 Implementation scripts
 Parallel sensing for a time

 COTS IDS and snort running simultaneously
 Analysts use COTS, but validate snort

 Disable COTS IDS
 On S-Day, analysts start using snort only
 Disable IDS software on COTS appliance

 Narrowly missed deadline

Enhancement - Phase 2

Phase 2 Begins – Dec. 2006

 Evaluate hardware replacement
 Call for reinforcements - hire help
 NIDS becomes NS (Network Sensor)

Replace Hardware

 Determine
approximate specs

 Market survey for
custom appliances

 Got demo boxes from
MBX (Advertised in
LJ every month)

Hardware Evaluation
Environment

 Structured one month testing
 Built testing environment in lab
 Used live capture files
 Extensive network tests

 100T
 1000T
 Bonded
 Spanned
 Tapped

Evaluation Parameters

 Tested two versions of legacy hardware
 Tested new hardware with two OS (debian and

gentoo)
 Tested multiple quad-ethernet cards
 Built custom image (Debian etch)

Sample Evaluation Results

Snort received 21704004 packets
Analyzed: 17774793(81.896%)
Dropped: 3929211(18.104%)

Snort received 21704004 packets
Analyzed: 17754109(81.801%)
Dropped: 3949895(18.199%)

Snort received 21704004 packets
Analyzed: 17329402(79.844%)
Dropped: 4374602(20.156%)

COTS (4240)

Snort received 13540634 packets
Analyzed: 515204(3.805%)
Dropped: 13025430(96.195%)

Snort received 13547781 packets
Analyzed: 524820(3.874%)
Dropped: 13022961(96.126%)

Snort received 13547505 packets
Analyzed: 534193(3.943%)
Dropped: 13013312(96.057%)

COTS (4215)

Snort received 21703720 packets
Analyzed: 21663726(99.816%)
Dropped: 39994(0.184%)

Snort received 21703824 packets
Analyzed: 21679190(99.886%)
Dropped: 24634(0.114%)

Snort received 21704005 packets
Analyzed: 21670880(99.847%)
Dropped: 33125(0.153%)

MBX (Debian)

Run 3Run 2Run 1

The 4215 processes only 8.61% of the entire amount of packets
sent, while the MBX machine processes 98.55% of the entire
amount of packets sent.
The 4240 and the MBX saw about the same amount of packets but
snort on the 4240 dropped approximately 19% of the packets.

MBX Hardware

 All name brand
components

 Option for high-end
options

 Well designed/cooled
 Upgradeable
 Inexpensive in

comparison

MBX vs. COTS NIDS

Model 4240

Pulled Trigger Feb. 2007

 Tested new hardware in place of existing
 Fantastic results
 Many additional features e.g.

 Port bonding (eases Tap input/Increases
bandwidth)

 Easily replaceable/upgradeable hardware
 Highly reliable hardware

 Ordered replacements for all NIDS 100+
 Ordered separate build and test systems

ISSO Appliance Implementation

 Sever ties with COTS vendor
 Launch the “ISSO Appliance”

Debian Build Process

 Build with fai (fully-automated installer) via PXE
 Documented process for an assembly-line
 Deployed APT-Proxy for patches
 Deployed APT-Repository for custom debs
 Appliance-ish install

 Labeled NICS for easy change
 Include color “Dell Like” instructions for local staff

Change Mindset to NS

 Network Sensor, more than just a NIDS
 Create framework for modularity on NS
 Flow data collection
 URL parsing
 Ad-hoc packet capture
 Specialized packet-capture (i.e. dns,http)
 Regional syslog collection*

Custom APT-Repo Packages

 Argus
 URLSnarf
 Snort
 SSH-Confs
 System-Confs
 Ad-Hoc

Next Steps

 Finish deployment of MBX boxes
 Develop and integrate VPN for mgmt traffic
 Automate deb package creation process
 Consider logging improvements

Final Thoughts

 Due diligence – demand quality from vendors
 Carefully consider your position as a customer
 FOSS is powerful and useful in the enterprise
 When you can't find a product you are happy

with, consider making it yourself
 Much more functionality
 May not be the cheaper option

 An appliance solution is not necessarily auto-
pilot, but this path may void your warranty

Sean Wilkerson
sean@aleric.net

